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Looking for a Cosmological Constant with the Rees-Sciama Effect
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In models with a cosmological constant a significant component of the cosmic microwave backg
(CMB) anisotropy is produced at rather low redshiftsz & 1. In these models, the gravitational potentia
perturbations begin to evolve at late times, shifting the frequencies of photons passing though
Since the potential reflects the matter density, the latter should be correlated with the CMB aniso
We examine this correlation and discuss the prospects for using an x-rayyCOBE comparison to detect a
cosmological constant.

PACS numbers: 98.80.Es, 95.85.Nv, 98.35.Ce, 98.70.Vc
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The idea of a cosmological constant (L) has been a
recurring one ever since Einstein first proposed it [
Recent motivations for a nonzeroL include easing the
“age crisis,” reconciling dynamical measures of the ma
density with prejudices for flatness, and increasing
power in large scale perturbations [2]. But rather th
simply introducing another free parameter, it is mo
interesting to ask whether there are specific observatio
signals that could confirm or refute the hypothesis o
nonzeroL.

We propose one such test here, which uses the fact t
L term causes the Newtonian potentialF to start evolving
at late times, producing a significant amount of cosm
microwave background (CMB) anisotropy [3]. SinceL

comes to dominate rather suddenly, this effect is m
important at rather modest redshifts. But if observations
the density field allow us to reconstruct the local potent
then this should be correlated with the microwave s
Measuring this correlation thus would constrainL.

The strongest present observational constraint onL is
that from gravitational lensing, which results from th
fact that if there were a large cosmological consta
then lensing events would be seen more freque
than they are. The handful of lensing events that h
been observed constrains the fraction of the criti
density contributed byL to be VL , 0.7 [4]. This
constraint, however, is sensitive to how well the ma
distributions of early type galaxies are modeled and re
on the assumption that no lensing events are obscure
dust. Other probes ofL, such as measurements of th
deceleration parameterq0, give weaker constraints [5]
Whether our test becomes competitive with these rem
to be seen, but the types of biases in the various tests
so different that it is worth exploring them all.

In the approximation of instantaneous recombinati
the microwave anisotropy in a directionn on the sky is
given by the formula
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The integral is over the conformal timet, tf  t0 being
today andti being recombination. The first term repr
sents the perturbations on the surface of last scatte
namely the perturbation to the density of the radiatio
baryon fluid (dg), the Doppler term (v ? n), and the New-
tonian potential. The second term, usually called
Integrated Sachs-Wolfe (ISW) term, represents the ef
of a time varying gravitational potential along the line
sight. Heuristically, it represents the redshifting of ph
tons which must “climb out” of a different potential tha
they “fell into.” This is called the Rees-Sciama effect [6

In a flat, matter dominated universe, with linear gro
ing density perturbations,F is constant and there is n
Rees-Sciama effect. Nonlinear gravitational collapse d
lead to anisotropies on very small angular scales,
of small amplitude [7]. In a universe with a significa
cosmological constant, however,F becomes time depen
dent even in linear theory and an appreciable amoun
anisotropy can be created at quite modest redshifts.

As L increases, it comes to dominate the ene
density at earlier and earlier redshifts. The effect on
evolution of the potential is thus more pronounced, as
the corresponding anisotropy generated at late times.
smaller values ofL the opposite is true; the correlate
anisotropy is less, but it is more concentrated at very
epochs. As an aside, we should note that theL also has
an indirect effect on the degree scale anisotropy, beca
in a flat universe the presence ofL alters the matter-
radiation balance at last scattering. In contrast, the la
scale Rees-Sciama effect is independent of physics at
redshifts (e.g., reionization).

To quantify this, we expand the sky temperature in
usual spherical harmonics

dT
T

snd ;
X
l,m

almYlmsu, fd , (2)

where in an isotropic ensemble thealm obeykalmal0m0l 
dll0dmm0Cl, with Cl the angular power spectrum. An ide
of how much anisotropy is produced from the late tim
evolution ofF is obtained by computing the contributio
to eachCl by the ISW integral prior to some redshi
© 1996 The American Physical Society 575
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FIG. 1. The large scale anisotropy power spectrum,Cl 
kjalmj2l, for a model withVL  0.8 andh  0.7. Also shown
is the anisotropy that is produced prior to a given redshift
z  0.5, 1, and 2. A significant portion of the anisotropy is
produced rather recently.

zc. This is shown in Fig. 1. From this we see that
significant fraction of theCl ’s at low l are produced
at z & 1. (The rise of the spectrum at lowl has been
discussed before [8,9]; its value as a signature ofL is
limited by cosmic variance.)

Since part of the CMB anisotropy is associated w
the gravitational potential at low redshift, it must b
correlated with the matter distribution in our vicinity
The gravitational potential is determined from the mat
distribution by Poisson’s equation=2F  4pGa2dMrM ,
where dM is the fractional density perturbation in th
matter andrM is the background matter density.

It is convenient to treat this in Fourier space,
that for exampleFsx, td 

P
k Fsk, tdeik?x, and also to

refer the density perturbation to the present timet0. In
the matter dominated epoch, allk modes grow at the
same rate, and from Poisson’s equation one infers
Fsk, td  gstddMsk, t0dyk2, wheregstd is independent
of k. Inserting this in relation (1), and expanding th
plane wave in spherical Bessel functions one finds

aRS
lm  8pil

X
k

Y p
lmsVkd

dMsk, t0d
k2

Z
dt ÙgstdjlskDtd ,

(3)

where Dt  t0 2 t. This equation has a simple in
terpretation in real space (RS): It says that the
contribution to alm comes from convolving the matte
densitydMsx, t0d perturbation in our vicinity with a spa-
tial weighting functionflsrdYp

lmsVxd. That is, if we sub-
stitute the inverse Fourier transform, we find

aRS
lm 

Z
d3xflsrddMsx, t0dYp

lmsVxd , (4)

where
576
r
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flsrd 
Z
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Z dk

p2
jlskrdjlskDtd . (5)

The integral is straightforwardly performed, with th
result that

flsrd 
22l12

s2l 1 1d

Z
dt Ùgstd

srDtdl

sr 1 Dt 1 jr 2 Dtjd2l11 .

(6)

Equations (5) and (6) tell one how to compute the Re
Sciama contribution to eachalm. The asymptotics off
are easily read off: Asr ! 0, f ! const, and asr !

`, f , r2sl11d. More importantly,flsrd is reasonably
described by a very simple approximation: For largel
(we shall only be interested inl . 2) the second term in
the integral is approximately a delta functiondsDt 2 rd,
and the integral is approximately

flsrd .
2

lsl 1 1d
Ùgst0 2 rd , (7)

i.e., it is proportional to the rate of change of the loc
gravitational potential. We have checked that this is
reasonable approximation down tol  2. Figure 2 shows
Ùgszd  Ùgssst0 2 tszdddd for a range of values forL. Note
thatflsrd is independent of the power spectrum of primo
dial density perturbations. The only assumption neede
that the perturbations are in the pure growing mode.

The observedalm ’s will differ from the Rees-Sciama
result, however, because a significant component of
observed anisotropy is produced on the last scattering
face. The latter acts to obscure the correlation betw
the observed anisotropy and the local density fluctuatio
What sort of signal-to-noise ratio may we ultimately e
pect in the cross correlation of the density and anisotro
given that we are limited by cosmic variance?

FIG. 2. The ideal weighting functionÙgszd as a function
of redshift. Even for very largeL, significant contributions
result from low redshift, though contributions begin at high
redshifts.
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FIG. 3. The signal-to-noise ratio squared as a function ol,
where the area under the curve represents the contribution
given logarithmic interval.

Let us begin with the most optimistic assumptio
that we have a complete survey of some tracer of
matter distribution, deep enough to see all redshifts wh
the cosmological constant was significant. We wi
to compare the hypothesis that theaRS

lm ’s defined by
Eq. (4)are correlated with the observedalm’s as predicted
by the L models, with the hypothesis that they are n
correlated at all. The relative likelihood of the tw
hypotheses can be computed for any given data set; if
correlations are real, then the expected value of this is

P 
Y
l,m

√
1 2

kaRS
lm atotp

lm l2

CRS
l Ctot

l

!21

. (8)

(For a set of independent observables,P is the product
of the individualP ’s). Defining the signal-to-noise ratio
squared as ln(P ) we infer that√

S
N

!2

; ln P $
X

l

s2l 1 1d
kaRS

lm atotp
lm l2

CRS
l Ctot

l
. (9)

This sum converges quickly beyondl , 50, yielding
SyN $ 5.5, 7.4, and 7.9 for VL  0.6, 0.8, and 0.9,
respectively. Figure 3 shows the contribution to th
sum as a function ofl. Note that the Rees-Sciam
contribution is almost uncorrelated with the remainder
the anisotropy, so thatkaRS

lm atotp
lm l ø CRS

l .
Realistic surveys, however, are not likely to probe t

density this deeply. For a survey which is less than ide
we can get some feel for the loss in signal by consider
the case where the convolution functionflsrd is the ideal
one out to some cutoff redshiftzc and zero beyond. The
signal-to-noise ratio in the correlation for a given multip
is then
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FIG. 4. We plot the reduction of the signal-to-noise ratio
the density survey is cut off beyond a given redshift.
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The suppression factor is given by
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lm aRSp
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k2dkflskdf̃lskdPkqR

k2dkflskd2Pk

R
k2dkf̃lskd2Pk

(11)

where

flskd 
Z

r2drjlskrd Ùgsrd,

f̃lskd 
Z zc

0
r2drjlskrd Ùgsrd , (12)

andPk ; kjdMsk, t0dj2l. We have performed these inte
grals numerically and find that the result is very weak
dependent onl. The resulting suppression factor fo
l  10 as a function of the redshift is shown in Fig. 4
As can be seen, there is a substantial signal even when
survey is cut off at rather modestzc.

To predict theaRS
lm , one requires a measure of the de

sity contrastdM in our vicinity. Traditionally, it is as-
sumed that this is at least roughly proportional to t
fluctuation in the number densitynsxd of galaxies (or
other tracers):sdnyn̄d  bsdryr̄d where b is a “bias”
factor which could depend on redshift. The dimensio
less cross correlation between the RS anisotropy le
predicted from a survey of mass tracers and the detec

CMB anisotropy, i.e.,kapred
lm adet

lm ly
q

C
pred
l Cdet

l , is indepen-
dent ofb if b is constant, but it does depend on the var
tion of b with redshift. However, the net effect is to alte
the effective weighting functionflszd, and we have seen
that the cross correlation is fairly insensitive to this.
real data analysis could set limits on the variation ofbszd
577
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and onL, and might be used to determine the magnitu
of b, should a correlation be found.

Possible tracers of the mass distribution atz , 1
include radio galaxies and quasars, and a number of la
scale surveys of these are underway. More immediat
it would be very interesting to correlate an all-sky
ray survey like ROSAT with the COBE anisotrop
measurement. The x rays with energies on the or
of a keV appear to be consistent with a simple mod
in which they are all produced by active galactic nuc
(Seyfert galaxies and quasars). Surveys of five deep fi
to find these active galactic nuclei indicate that th
distribution in redshift (i.e., ¯dNydz) is approximately flat
for 0.5 , z , 20 and cuts off rapidly thereafter [10], s
they do indeed sample the redshift range of interest.
estimate the expected correlation, however, we need
translate this into an effective weighting functionflsrd.

At any frequency, the intensity of the x-ray sky in
given direction isisnd 

R
F szddNsrn, zd, whereF szd

is the mean flux from a source at redshiftz anddNsrn, zd
is the number of sources in the redshift intervalfz, z 1

dzg. [Here r  t0 2 tszd.] We can expressdN as
dNsrn, zd  ¯dNf1 1 bszddMsrn, zdg, where ¯dN is the
mean value ofdN . We then obtain

disnd 
Z

dz
dN̄
dz

F szdbszdDszddMsrn, z  0d , (13)

where Dszd is the matter growth factor normalized t
unity today. Comparing this with Eq. (4), we can identi

r2flsrd ~ bszd
dz
dt

dN̄
dz

DszdF szd , (14)

thus giving us an expression for the actual experimen
weighting function. Using a simple fit to thēdNydz given
in [10], and the naive assumptions thatbszd and F szd
are constant, we find a suppression factor of,0.8 for
an VL  0.8 universe. Barring other sources of noise
substantial signal should be visible in the COBE-ROSA
correlation, at least for this model.

Very recently, the large angular scale fluctuations
the ROSAT survey have been studied, with the findi
that there is a significant autocorrelation on scalesu , 6o

[11]. The cross-correlation function is less susceptible
noise than the autocorrelation function; this is illustrat
by the analysis of the FIRS experiment [12], where t
cross correlation with COBE was measured even thou
the autocorrelation was insignificant. In fact, an upp
bound to the COBEyx-ray correlation has already bee
found by Bennettet al. [13] using the COBE first year
578
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maps and the HEA0 1 A-2 x-ray map, but it is too wea
to give an interesting limit onL. Correlating ROSAT
with the COBE four year maps should provide a muc
stronger limit.

In this paper, we have focused onL models and
found a significant correlation between local densi
perturbations and the CMB anisotropy. However, w
wish to emphasize thatsomecorrelation is expected in
most cosmological models, such as those involving
spatially open universe or cosmic defects. The tim
independence of the Newtonian potential in the flat mat
dominated universe is very much a special case. Wh
the observation of a correlation would not uniquely sing
out L as its explanation, the absence of a correlati
would impose a powerful constraint on many models.
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